Ion and acid-base balance in three species of Amazonian fish during gradual acidification of extremely soft water.

نویسندگان

  • R W Wilson
  • C M Wood
  • R J Gonzalez
  • M L Patrick
  • H L Bergman
  • A Narahara
  • A L Val
چکیده

Sensitivity to acid water was assessed in three species of Amazonian fish that encounter naturally acidic blackwaters to differing degrees in the wild: tambaqui (Colossoma macropomum), matrincha (Brycon erythropterum), and tamoatá (Hoplosternum littorale), in decreasing order of occurrence in blackwater. Fish were exposed to a graded reduction in water pH, from pH 6 to 5 to 4 to 3.5, followed by return to pH 6. Fish were exposed to each new pH for 24 h. During these exposures, net transfers of ions (Na+, K+, Cl-, and Ca2+) and acid-base equivalents to and from the external water were used as physiological indicators of acid tolerance. Exposure to pH 5 had a minimal effect on net ion fluxes. Significant net losses of all ions (except Ca2+) were recorded in all three species during the first few hours of exposure to pH 4. However, ion balance was usually restored within 18 h at pH 4. Exposure to pH 3.5 caused even greater ion losses in all three species and proved to be acutely lethal to tamoatá. Matrincha sustained irreversible physiological damage at pH 3.5, as ion fluxes did not recover following return to pH 6 and there was some mortality. Tambaqui suffered the least ionoregulatory disturbances at pH 3.5 and was the only species to make a full recovery on return to pH 6. In all species, there was a tendency for ammonia excretion to increase at low water pH, but even at pH 3.5, there was no significant net uptake of acid from the water. Overall, there was a strong relationship between the magnitude of ionic disturbances and the lethality of exposure to low pH. The relative insensitivity of the ionoregulatory system of tambaqui to low pH indicates that this is a feature of fish native to blackwater systems rather than one that is common to all Amazon fish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The physiology of fish at low pH: the zebrafish as a model system.

Ionic regulation and acid-base balance are fundamental to the physiology of vertebrates including fish. Acidification of freshwater ecosystems is recognized as a global environmental problem, and the physiological responses to acid exposure in a few fish species are well characterized. However, the underlying mechanisms promoting ionic and acid-base balance for most fish species that have been ...

متن کامل

Physiological impacts of elevated carbon dioxide and ocean acidification on fish.

Most fish studied to date efficiently compensate for a hypercapnic acid-base disturbance; however, many recent studies examining the effects of ocean acidification on fish have documented impacts at CO2 levels predicted to occur before the end of this century. Notable impacts on neurosensory and behavioral endpoints, otolith growth, mitochondrial function, and metabolic rate demonstrate an unex...

متن کامل

Osmoregulatory Parameters of Asian sea bass (Lates calcarifer) during adaptation in Freshwater

In the present study, the adaptation of Asian sea bass (lates calcarifer) was investigated in fresh water using physiological parameters of osmoregulation including: the plasma levels of thyroid hormones and cortisol, gill Na+/ K+-ATPase activity and plasma concentrations of sodium and chloride. For this purpose, 60 fish were distributed in three 300 L tanks with a density of 20 fish per tank. ...

متن کامل

Responses of an Amazonian teleost, the tambaqui (Colossoma macropomum), to low pH in extremely soft water.

Our goal was to compare the internal physiological responses to acid challenge in an acidophilic tropical teleost endemic to dilute low-pH waters with those in nonacidophilic temperate species such as salmonids, which have been the subjects of most previous investigations. The Amazonian tambaqui (Colossoma macropomum), which migrates between circumneutral water and dilute acidic "blackwater" of...

متن کامل

Elevated CO2 increases energetic cost and ion movement in the marine fish intestine

Energetic costs associated with ion and acid-base regulation in response to ocean acidification have been predicted to decrease the energy available to fish for basic life processes. However, the low cost of ion regulation (6-15% of standard metabolic rate) and inherent variation associated with whole-animal metabolic rate measurements have made it difficult to consistently demonstrate such a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological and biochemical zoology : PBZ

دوره 72 3  شماره 

صفحات  -

تاریخ انتشار 1999